This article was downloaded by: On: *28 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Physics and Chemistry of Liquids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713646857

Some Physical Properties of Binary Liquid Systems: (Ethanoic Acid or Propanoic Acid or Butanoic Acid Ethanenitrile)

R. Aĥluwalia^a; R. K. Wanchoo^a; J. L. Vashisht^a ^a Department of Chemical, Engineering and Technology Panjab University, Chandigarh, India

To cite this Article Ahluwalia, R. , Wanchoo, R. K. and Vashisht, J. L.(1995) 'Some Physical Properties of Binary Liquid Systems: (Ethanoic Acid or Propanoic Acid or Butanoic Acid Ethanenitrile)', Physics and Chemistry of Liquids, 29: 2, 87 -96

To link to this Article: DOI: 10.1080/00319109508028413 URL: http://dx.doi.org/10.1080/00319109508028413

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Phys. Chem. Liq., 1995, Vol. 29, pp. 87–96 Reprints available directly from the publisher Photocopying permitted by license only

SOME PHYSICAL PROPERTIES OF BINARY LIQUID SYSTEMS: (ETHANOIC ACID OR PROPANOIC ACID OR BUTANOIC ACID + ETHANENITRILE)

R. AHLUWALIA, R. K. WANCHOO* and J. L. VASHISHT

Department of Chemical Engineering and Technology Panjab University, Chandigarh-160 014, India

(Received 3 September 1994)

Density, viscosity and surface tension of three binary liquid systems: ethanoic acid + ethanenitrile, propanoic acid + ethanenitrile, butanoic acid + ethanenitrile have been determined at 25, 35 and 45° C, over the whole compositional range. The excess values of molar volume, viscosity, Gibbs free energy for the activation of flow and surface tension were evaluated. The excess values were fitted to a Redlich-Kister type of equation. The Grunberg-Nissan parameter, *d*, was also calculated. The binary viscosity data were fitted to the models of McAllister, Heric, Auslander and Teja and Rice. Surface tension data were fitted to the models of Zihao and Jufu, Rice and Teja, and an empirical two-constant model proposed in this study.

KEY WORDS: Excess molar volume, viscosity, activation energy, surface tension.

INTRODUCTION

As an extension to our previous work¹⁻⁵ on the measurement of transport and surface properties of non-electrolyte mixture, in the present study densities, viscosities and surface tension of the binary organic liquid mixtures of ethanoic acid or propanoic acid or butanoic acid with ethanenitrile have been found experimentally at 25, 35 and 45°C. From these experimental results, excess properties have been determined and studied in terms of sign and magnitude of the physical properties in the respective mixtures. Valuable information regarding the presence of secondary bonding forces in a particular system is derived from the study. Also the entire data on the excess properties have been fitted to the Redlich-Kister type of equation. The mixture viscosity data have been fitted to the models of McAllister, Heric, Auslander and Teja and Rice.

Binary surface tension data have been fitted to the models of: Zihao and Jufu, Rice and Teja and an empirical two parameter model.

^{*}Author to whom correspondence should be addressed.

EXPERIMENTAL SECTION

Ethanenitrile, ethanoic acid, propanoic acid and butanoic acid (S.D's grade) were purified by the standard procedures⁶. The purity of all the components was checked by comparing their experimental density with that of literature value⁶. For each run, a fresh liquid mixture was prepared on mass basis, using a Mettler balance (precision of $1*10^{-5}$ g). The purity of each component with respect to the corresponding literature value is recorded in Table 1.

Densities of the pure components and their mixtures were measured with density meter (AP-Paar, DMA-48) calibrated at 25, 35 and 45°C with ethanol and 1,2 dichloroethane. At each temperature, the densities were measured with a precision of about $\pm 0.01\%$.

Viscosities were determined with the help of a modified Ubbelohode viscometer⁷. At each temperature the Viscometer was calibrated against the known viscosities of benzene and tetrachloromethane⁸. The constants of the viscometer at each temperature were determined from the following equation:

$$v = \eta/\rho = at - b/t \tag{1}$$

where a and b are the temperature dependent constants of the viscometer. At a particular temperature, an average value of the efflux time (t) of the mixture and corresponding values of a and b were used in Eq. (1) for the calculation of kinematic viscosity (v). Using the density values of the respective mixtures, the absolute viscosity (η) was thus calculated. The accuracy of the viscosity measurements is of the order of 0.001 cP.

Similarly, surface tension of the pure components and that of their mixtures was determined by the differential capillary rise method⁸. The difference (Δ H), in the level of liquid in two capillaries was measured with a cathetometer reading to 0.05mm. An average reproducibility of better than 0.01 mm was obtained. The difference in the levels of liquid in two capillaries of different radii is related to the surface tension of the liquid by the relation:

$$h_1 - h_2 = \Delta H = (2\sigma/\rho g)A + B - C \tag{2}$$

The constants A, B and C were calculated using the standard values of surface tension of benzene and ethylethanoate at 25°C. For each mixture of the respective systems, ΔH was recorded at three different temperatures over the entire compositional range. The surface tension of each mixture was thus calculated from Eq. (2).

Table 1 Physical constants of pure components at 25°C.

Property	Ethanenitr	ile	Ethanoic a	cid	Propanoic	acid	Butanoic a	ıcid
	Lit. ⁶ Samp	le used	Lit. ⁶ Samp	le used	Lit. ⁶ Samp	ole used	Lit. ⁶ Samp	ole used
Density (g/cm ³)	0.7766	0.7767	1.04366	1.0437	0.9880	0.9882	0.9532	0.9533

The entire experimental data for all the three systems is recorded in Table 2. All the measurements were made at a constant temperature with the help of a circulating type ultra cryostat (type MK 70, MLW, Germany) to within ± 0.02 K.

The Grunberg-Nissan parameter⁹, was determined using the following expression:

$$d = \left(\frac{\ln \eta_{\text{mix}} - x_1 \ln \eta_1 - x_2 \ln \eta_2}{x_1 x_2}\right)$$
(3)

Table 2 Mole fraction(x_1), density(ρ), viscosity(η), surface tension(σ) and Grunberg-Nissan parameter(d) for various systems.

System: Ethanoic acid + Ethanenitrile, 25°C

<i>x</i> ₁	$\rho(g/cm^3)$	η(cP)	σ(dyne/cm)	d
.0000	.776700	.341800	27.54	*****
.0924	.806800	.374210	26.72	2385
.1864	.835900	.416220	26.58	1720
.2820	.863800	.478550	26.54	0047
.3793	.890700	.557970	26.57	.1539
.4782	.916700	.650910	26.65	.2881
.5789	.942200	.753340	26.76	.4001
.6814	.967300	.860760	26.89	.4985
.7857	.992300	.968160	27.00	.5998
.8919	1.017500	1.069990	27.06	.7666
1.0000	1.043700	1.131000	27.10	*****
System:	Ethanoic acid + l	Ethanenitrile, 3	5°C	
.0000	.766000	.308500	26.22	*****
.0924	.797200	.326670	25.75	5555
.1864	.826900	.362210	25.59	3225
.2820	.855400	.417680	25.53	0683
.3793	.880700	.489080	25.54	.1475
.4782	.909000	.571930	25.62	.3209
.5789	.934600	.661210	25.74	.4595
.6814	.959500	.751350	25.87	.5744
.7857	.983900	.836160	26.00	.6799
.8919	1.008300	.908780	26.08	.8137
1.0000	1.032500	.948700	26.10	*****
System:	Ethanoic acid + l	Ethanenitrile, 4	-5°C	
.0000	.755500	.275500	24.91	*****
.0924	.786600	.280840	24.60	8989
.1864	.816300	.316850	24.51	3360
.2820	.844700	.375920	24.50	.1093
.3793	.871900	.451510	24.56	.4495
.4782	.898100	.536350	24.65	.7083
.5789	.923400	.622360	24.77	.9123
.6814	.948200	.700530	24.90	1.0863
.7857	.972500	.760920	25.00	1.2577
.8919	.996800	.792500	25.06	1.4908
1.0000	1.021300	.766700	25.11	*****

able 2	(Continued)			
System: I	Propanoic acid +	Ethanenitrile,	25°C	
.0000	.776700	.341800	27.54	*****
.0727	.799200	.387070	26.72	.6551
1499	.821700	432590	26.34	.5499
2322	843800	490030	25.04	5835
3100	865400	558840	25.81	6373
A136	886500	637810	25.66	6800
5141	.000300	724670	25.00	.0077
.5141	.907200	./240/0	25.57	.7370
.0221	.927500	.813040	25.31	.7794
./383	.947500	.904820	25.44	.8214
.8640	.967600 .988200	.983280 1.030500	25.32 25.13	.8/82 *****
ystem:]	Propanoic acid +	Ethanenitrile,	35°C	
0000	766000	308500	26.22	*****
0727	787000	341090	25 57	3574
1490	810200	384110	25.57	4790
7277	822400	130-1110 137210	23.21	-+/7U 5025
2100	032400	100070	24.92	.JOJJ 4674
.3199	.854200	.499870	24.70	.00/0
.4136	.8/5/00	.570290	24.53	./344
.5141	.896700	.645960	24.42	./8/5
.6221	.917400	.722740	24.35	.8302
.7383	.937500	.794310	24.29	.8643
.8640	.957100	.851250	24.20	.8823
0000	.977400	.885800	24.07	*****
System:	Propanoic acid +	Ethanenitrile,	45°C	
.0000	.755500	.275500	24.91	*****
.0727	.778900	.300710	24.32	.2317
.1499	.802100	.344990	24.00	.6005
.2322	.825100	.394790	23.73	.7291
.3199	.847600	.449350	23.51	.7936
.4136	.869600	.507430	23.35	.8304
.5141	.890900	.567030	23.24	.8527
.6221	.911400	.625130	23.17	.8665
7383	930900	677220	23.13	8731
8640	9/9700	716770	23.09	8603
.0000	.966600	.741200	23.10	*****
System:	Butanoic acid +	Ethanenitrile, 2	5°C	
.0000	.776700	.341800	27.54	****
.0598	.797900	.394380	26.73	.9508
.1252	.816800	.437730	26.37	.5459
	.835700	.504360	26.07	.5935
.1971		506910	25.85	7180
.1971 2763	854600	17000	£	.,100
.1971 .2763 3641	.854600 873200	717000	25 71	8447
.1971 .2763 .3641 .4621	.854600 .873200 801200	.717000	25.71	.8442
.1971 .2763 .3641 .4621	.854600 .873200 .891300	.717000 .865260	25.71 25.64	.8442 .9525
.1971 .2763 .3641 .4621 .5720	.854600 .873200 .891300 .908700	.717000 .865260 1.038810	25.71 25.64 25.64	.8442 .9525 1.0415
.1971 .2763 .3641 .4621 .5720 .6961	.854600 .873200 .891300 .908700 .925100	.717000 .865260 1.038810 1.228690	25.71 25.64 25.65 25.65	.8442 .9525 1.0415 1.1199
.1971 .2763 .3641 .4621 .5720 .6961 .8375	.854600 .873200 .891300 .908700 .925100 .940300	.717000 .865260 1.038810 1.228690 1.414560	25.71 25.64 25.64 25.65 25.57	.8442 .9525 1.0415 1.1199 1.2200

90

		the second se		
0000	7((000	209500	26.22	
.0000	./00000	.308300	20.22	*****
.0598	.787300	.345170	25.57	.5152
.1252	.805700	.384910	25.25	.4276
.1971	.824200	.445470	24.98	.5872
.2763	.842800	.528540	24.77	.7679
.3641	.861400	.634890	24.62	.9265
.4621	.879600	.763210	24.54	1.0549
.5720	.897300	.908410	24.50	1.1572
.6961	.914100	1.058230	24.50	1.2435
.8375	.929700	1.187420	24.46	1.3322
1.0000	.943400	1.242100	24.33	*****
System [.]	Butanoic acid + 1	Ethanenitrile 4	<u>ና</u> የር	
			50	
.0000	.755500	.275500	24.91	*****
.0598	.776900	.314650	24.36	1.0386
.1252	.796700	.368080	24.10	1.2219
.1971	.816500	.427170	23.87	1.2220
.2763	.836100	.492190	23.68	1.1825
.3641	.855400	.563200	23.54	1.1311
.4621	.873900	.639820	23.45	1.0766
.5720	.891500	.720910	23.40	1.0219
.6961	.907600	.803860	23.39	.9672
8375	921900	.883620	23.37	.9057
1.0000	.933500	.956200	23.35	*****

System: Butanoic acid + Ethanenitrile, 35°C

From the experimental data, excess properties viz; V^E , η^E , G^E and σ^E were calculated using the following expressions¹⁰:

$$V^{E} = x_{1} M_{1} \left[\rho_{\text{mix}}^{-1} - \rho_{1}^{-1} \right] + x_{2} M_{2} \left[\rho_{\text{mix}}^{-1} - \rho_{2}^{-1} \right]$$
(4)

$$\log(1/\eta^{0}) = x_{1}\log(1/\eta_{1}) + x_{2}\log(1/\eta_{2})$$

$$\eta^{E} = \eta_{\text{mix}} - \eta^{0}$$
(5)

$$G^{E}/RT = \left[\ln \eta_{\rm mix} V_{\rm mix} - \left\{x_1 \ln \eta_1 V_1 + x_2 \ln \eta_2 V_2\right\}\right]$$
(6)

$$\sigma^E = \sigma_{\text{mix}} - [x_1 \sigma_1 + x_2 \sigma_2] \tag{7}$$

The values of V^E , η^E , G^E and σ^E were fitted with a Redlich-Kister type of Eq.¹¹, using least squares method.

$$P^{E} = x_{1} x_{2} \sum_{1}^{n} A_{j-1} (2x_{1} - 1)^{j-1}$$
(8)

where P^E represents the excess property, A_j is the polynomial coefficient and *n* the polynomial degree. The results thus obtained are recorded in Table 3.

R. AHLUWALIA et al.

The following theoretical models for mixture viscosities have been tested with the experimental data. McAllister's¹² equation derived on the basis of Eyring's absolute reaction rate theory is:

$$\ln \eta_{\rm mix} = x_1^3 \ln \eta_1 + x_2^3 \ln \eta_2 + 3x_1^2 x_2 \ln \eta_{12} + 3x_1 x_2^2 \ln \eta_{21} - \ln [x_1 + x_2 (M_2/M_1)] + 3x_1^2 x_2 \ln [\frac{2}{3} + (M_2/3M_1)] + 3x_1 x_2^2 \ln [\frac{1}{3} + 2M_2/3M_1] + x_2^3 \ln [M_2/M_1],$$
(9)

Table 3 Coefficients of Eq. (8) and standard deviations (SD) determined by the method of least squares.

Parameter	VE	G^{E}	η^E	σ^{E}
(Eq. 8)	(cm³/mol)	(J/mol)	(cP)	(dyne/cm)
	Tem	р. 25.0°С		
A	- 1.5529	690.338	-0.2625	-2.4605
A ₁	1.4933	1621.95	0.4447	3.7714
A ₂	0.0212	- 329.566	0.1910	-3.0868
SĎ	0.0029	9.26497	0.00242	0.0665
	Tem	р. 35.0°С		
A	-2.4309	789.342	-0.1536	-2.0240
A ₁	1.3881	2129.44	0.4893	2.6798
A,	-0.2729	- 954.789	0.0852	-0.9608
SĎ	0.0025	8.16051	0.0011	0.0229
	Tem	р. 45.0°С		
A	-2.5099	1895.40	0.1346	-1.302
A ₁	1.5655	3455.43	0.7763	2.018
A,	-0.1728	-1831.01	0.0625	-0.928
SĎ	0.0014	24.9803	0.0017	0.014

System: Ethanoic acid + Ethanenitrile

System: Propanoic acid + Ethanenitrile

	Tem	ıp. 25.0°C		
A _o	-1.0470	1902.23	0.1013	-3.058
A,	0.7773	567.227	0.3430	5.418
A,	0.3066	-2.42700	0.0907	-4.514
SĎ	0.0038	8.73959	0.0016	0.278
	Tem	р. 35.0°С		
A ₀	-1.2033	2114.82	0.1537	-2.763
Å,	0.3036	696.697	0.3292	2.746
A ₂	0.6545	- 531.276	-0.0228	- 1.504
SĎ	0.0069	4.1760	4 0.0004	0.032
	Tem	пр. 45.0°С		
A ₀	-2.6717	2338.99	0.2067	-2.925
A ₁	0.0133	428.221	0.2353	1.984
A_2	0.2127	-841.152	-0.0983	-1.581
SĎ	0.0026	20.3828	0.0018	0.031

	Tem	p. 25.0°C		
$A_0 \\ A_1 \\ A_2 \\ SD$	- 2.7152	2687.12	-0.0526	- 3.004
	- 0.1909	1076.51	0.7751	4.702
	- 0.8023	- 254.503	0.2674	- 2.669
	0.0272	24.2879	0.0047	0.067
	Tem	р. 35.0°С		
$ \begin{array}{c} \mathbf{A_0} \\ \mathbf{A_1} \\ \mathbf{A_2} \\ \mathbf{SD} \end{array} $	-2.3397	3101.87	0.1479	- 2.909
	-0.2437	1392.09	0.7797	3.417
	-1.0470	924.281	0.1110	- 2.046
	0.0386	11.9302	0.0026	0.0151
	Tem	р. 45.0°С		
$\begin{array}{c} A_0 \\ A_1 \\ A_2 \\ SD \end{array}$	- 3.9704	3078.54	0.2141	-2.718
	- 0.4557	- 677.478	0.1390	2.446
	- 0.4457	- 114.033	-0.0736	-1.810
	0.0205	13.4337	0.0015	0.0443

System: Butanoic acid + Ethanenitrile

where η_{12} and η_{21} are the interaction parameters. Heric's¹³ equation has the following form:

$$\ln \eta_{\rm mix} = x_1 \ln \eta_1 + x_2 \ln \eta_2 + x_1 \ln M_1 + x_2 \ln M_2 - \ln(x_1 M_1 + x_2 M_2) + \delta_{12} \quad (10)$$

where δ_{12} is a deviation function expressed as:

$$\delta_{12} = x_1 x_2 [\beta_{12} + \beta_{21} (x_1 - x_2)] \tag{11}$$

Auslander's¹⁴ model is represented by:

$$x_1(x_1 + B_{12}x_2)(\eta_{\text{mix}} - \eta_1) + A_{21}x_2(B_{21}x_1 + x_2)(\eta_{\text{mix}} - \eta_2) = 0$$
(12)

where B_{12} , A_{21} and B_{21} are parameters representing binary interactions. For a binary mixture, the Teja and Rice¹⁵ equation based on theory of corresponding states can be written as:

$$\ln(\eta_{\min}\varepsilon_{\min}) = x_1 \ln(\eta_1\varepsilon_1) + x_2 \ln(\eta_2\varepsilon_2)$$
(13)

Where,

$$\begin{split} & \varepsilon_i = V_{ci}^{2/3} / (T_{ci} M_i)^{1/2} \quad \text{for} \quad i = 1, 2 \text{ or mix} \\ & V_{cmix} = x_1^2 V_{c1} + x_2^2 V_{c2} + 2x_1 x_2 [V_{c1}^{1/3} + V_{c2}^{1/3}]/8 \\ & T_{cmix} = \{x_1^2 T_{c1} V_{c1} + x_2^2 T_{c2} V_{c2} + 2x_1 x_2 \psi_{12} [T_{c1} V_{c1} T_{c2} V_{c2}]^{1/2}\} / V_{cmix} \\ & \eta_1 \text{ to be evaluated at a temperature } T(T_{c1} / T_{cmix}) \\ & \eta_2 \text{ to be evaluated at a temperature } T(T_{c2} / T_{cmix}) \end{split}$$

R. AHLUWALIA et al.

T being the system temperature and ψ_{12} the interaction parameter having a value around unity.

Various models used for testing the binary surface tension data are given below.

The Zihao and Jufu¹⁶ model equation based on the work of Hildebrand and Scott⁹ can be written as:

$$\sigma_{\min} = \frac{x_1 \sigma_1}{x_1 + A x_2} + \frac{x_2 \sigma_2}{x_2 + B x_1}$$
(14)

Where A and B are interaction parameters.

The model of Rice and Teja¹⁷ based on theory of corresponding states can be expressed as:

$$\sigma_{\rm mix}/\phi_{\rm mix} = x_1 \sigma_1 \phi_1 + x_2 \sigma_2 \phi_2 \tag{15}$$

Where,

$$\phi = V_{ci}^{2/3}/T_{ci} \quad \text{for } i = 1, 2 \text{ or mix}$$

$$V_{cmix} = x_1^2 V_{c1} + x_2^2 V_{c2} + 2x_1 x_2 [V_{c1}^{1/3} + V_{c2}^{1/3}]/8$$

$$T_{cmix} = \{x_1^2 T_{c1} V_{c1} + x_2^2 T_{c2} V_{c2} + 2x_1 x_2 \psi_{12} [T_{c1} V_{c1} T_{c2} V_{c2}]^{1/2}\}/V_{cmix}$$

Here σ_1 is to be evaluated at a temperature = $T(T_{c1}/T_{cmix})$ and σ_2 at a temperature = $T(T_{c2}/T_{cmix})$. The surface tension data has also been fitted to an empirical two constant model expressed as:

$$\sigma_{\rm mix} = x_1 \sigma_1 + x_2 \sigma_2 + x_1 x_2 [A' + B'(x_1 - x_2)] \tag{16}$$

Where A' and B' are binary interaction parameters. The parameters corresponding to Eqs (9), (11)–(16) have been determined using a least squares method and are reported in Table 4.

RESULTS AND DISCUSSION

The experimental values of physical properties (ρ , η and σ) of all the three systems along with Grunberg-Nissan parameter, d, are reported in Table 2. The value of parameter, d, changes its sign from – ive to + ive with the increase in concentration of ethanoic acid in ethanoic acid + ethanentrile system, whereas, for all other systems, d, is + ive; indicating the presence of specific interactions between the two components¹⁸.

The model of Heric produces satisfactory result; while the models of McAllister and Auslander predict very well the viscosity data of all the three systems. Teja and Rice model, which is based on theory of corresponding states, also predicts the binary viscosity data to within reasonable accuracy.

Surface tension data is well predicted by the proposed empirical two-parameter model (Eq. 16) as well as by Rice and Teja model. The Zihao and Jufu model based on the Hilderbrand-Scott¹⁹ equation, also predicts satisfactory results for the system studied.

Table 4 Interaction parameters for various models and standarddeviations (SD) determined by least squares method.

		<i>Temp.</i> >			
Model	Constants	25°C	35°C	45°C	
McAllister	η.,	1.03468	0.94887	1.04958	
(Eq. 9)	η_{12}	0.45889	0.38186	0.31753	
• • /	SD	0.00343	0.00662	0.01067	
Heric	δ	0.35640	0.36830	0.73210	
(Eq. 11)	δ_{a}^{12}	0.61920	0.80160	1.27960	
	SD	0.25128	0.31181	0.42417	
Auslander	B.	0.64139	0.28964	0.50404	
(Eq. 12)	A ¹²	1.67220	1.10713	1.54080	
· • /	B ²¹	0.38024	0.48422	-0.23995	
	SĎ	0.00320	0.00300	0.00800	
Teja&Rice	V.	1.05	1.05	1.05	
(Eq. 13)	SD2	0.00685	0.00966	0.01845	
Zihao&Jufu	Ā	-1.02449	-4.07649	-1.30074	
(Ea. 14)	В	0.05129	0.73774	0.60871	
	SD	0.2680	0.3427	0.1507	
Two					
Parameter					
model	Α'	-0.03520	-0.01130	0.01430	
(Ea. 16)	B′	0.13260	0.09520	0.0733	
/	SD	0.11284	0.03544	0.0310	
Rice&Teja	ψ	0.95	0.95	0.95	
(Eq. 15)	SD	0.1237	0.05113	0.0302	

System: Ethanoic acid + Ethanenitrile

System: Propanoic acid + Ethanenitrile

		<i>Temp.</i> >			
Model	Constants	25°C	35°C	45°C	
McAllister	η.,	0.98721	0.89071	0.7528	
(Eq. 9)	η_{21}^{112}	0.60025	0.52699	0.4873	
	SD	0.00136	0.00371	0.0047	
Heric	δ.,	0.89520	0.92640	0.9938	
(Eq. 11)	δ_{21}^{12}	0.18710	0.25250	0.1499	
	SD	0.31167	0.37315	0.4537	
Auslander	B.,	1.43412	0.79632	0.5415	
(Eq. 12)	A.,	1.79879	1.06907	0.6665	
	B ²¹	0.16776	0.28333	0.4647	
	sĎ	0.00130	0.00090	.00220	
Teja&Rice	Ψ	1.10	1.10	1.10	
(Eq. 13)	SD	0.0080	0.00426	0.0025	
Zihao&Jufu	A	- 7.86706	984.375	-8.3627	
(Eq. 14)	В	-0.95292	196.024	29.489	
	SD	0.289	0.038	1.470	
Two					
Parameter					
model	Α′	0.03500	0.05690	0.0428	
(Eq. 16)	B'	0.18220	0.07570	0.0493	
	SD	0.29189	0.04625	0.0484	
Rice&Teja	ψ_{12}	0.90	0.90	0.90	
(Eq. 15)	SĎ	0.11895	0.08996	0.06853	

		Temp >			
Model	Constants	25°C	35°C	45°C	
McAllister	η ₁₂	1.50752	1.36848	0.84291	
(Eq. 9)	n ₂₁	0.69801	0.59790	0.67622	
•	SD	0.00535	0.00806	0.00154	
Heric	δ_{12}	1.24180	1.32930	1.34910	
(Eq. 11)	δ_{21}	0.39040	0.52990	-0.30740	
	SD	0.34509	0.31342	0.39305	
Auslander	B ₁ ,	0.93397	0.75671	0.50023	
(Eq. 12)	A ₂₁	1.68470	1.36049	0.50168	
	B ₂₁	0.19892	0.09921	1.17389	
	SD	0.00400	0.00280	0.00130	
Teja & Rice	ψ_{12}	1.10	1.10	1.10	
(Eq. 13)	SD	0.01093	0.01917	0.00890	
Zihao&Jufu	Ā	989.889	989.973	0.94805	
(Eq. 14)	В	129.806	123.595	0.13368	
•••	SD	0.1078	0.0431	0.0228	
Two					
Parameter					
model	Α′	0.16250	0.16290	0.16540	
(Eq. 16)	B ′	0.11210	0.06700	0.0327	
· • /	SD	0.08201	0.06041	0.0529	
Rice& Teja	412	0.90	0.90	0.90	
(Eq. 15)	SD	0.0434	0.04831	0.0501	

System: Butanoic acid + Ethanenitrile

References

- 1. R. K. Wanchoo and J. Narayan J. Phys. Chem. Liq., 25, 15 (1992).
- 2. R. K. Wanchoo, J.Narayan, G. K. Raina and G. A. Wani, J. Chem. Eng. Commu. 69, 225 (1988).
- 3. R. K. Wanchoo, J.Narayan, G. K. Raina and V. K. Rattan, J. Chem. Eng. Commu., (1989).
- 4. J. Narayan, R. K.Wanchoo, G. K. Raina and G. A. Wani, Can. J. Chem. Eng. 66, 1021 (1988).
- 5. R. K. Wanchoo, and J. Narayan J. Phys. Chem. Liq., 27, 159 (1994).
- 6. J. A. Riddick and W. B. Bunger, Techniques of Chemistry, Vol-II, (Wiley-Interscience, New York, 1970).
- 7. A. Weissberger, Techniques of Organic Chemistry, Third Edn., (Interscience, New York, 1973).
- 8. B. P. Levitt, Findlay's Practical Physical Chemistry, Ninth Edn., (Longman, London, 1973).
- 9. L. Grunberg and A. H. Nissan, Nature (London), 164, 799 (1949).
- R. C.Reid, J. M. Prausnitz and T. K. Sherwood, The properties of gases and liquids, Third Edn., (McGraw Hill Book Company, New York, 1958).
- 11. O. Redlich and A. T. Kister, Ind. Eng. Chem. 40, 345 (1948).
- 12. R. L. McAllister, AICHE J, 6,427 (1960).
- 13. E. L. Heric, J. Chem. Eng. Data, 11,66 (1966).
- 14. G. Auslander, Br. Chem. Eng., 9, 610 (1964).
- 15. A. S. Teja and P. Rice, Ind. Eng. Chem. (F), 20,77 (1981).
- 16. Wang Zihao and Fu Jufu, Private communication.
- 17. P. Rice and A. S. Teja, J. Colloid and Interface Science, 86, (1) 158 (1982).
- 18. R. J. Fort and W. R. More, Trans. Faraday Soc., 62, 1112 (1966).
- 19. J. H. Hilderbrand and R. L. Scott, The Solubility of non-Electrolytes, 3rd Edn., (Dover, New York, 1964).